Mystery of young stars near black holes solved

Wednesday 20 August 2008

 The mystery of how young stars can form within the deep gravity of black holes has been solved by Scottish researchers.

The team of astrophysicists at the Universities of St Andrews and Edinburgh made the discovery after developing computer simulations of giant clouds of gas being sucked into black holes.  The new research may help scientists gain better understanding of the origin of stars and supermassive black holes in our Galaxy and the Universe.

Until now, scientists have puzzled over how stars could form around a black hole, since molecular clouds – the normal birth places of stars – would be ripped apart by the black hole’s immense gravitational pull.

However, the new study by Professor Ian Bonnell (St Andrews) and Dr Ken Rice (Edinburgh) found that stars appear to form from an elliptical-shaped disc, the remnant of a giant gas cloud torn apart as it encounters a black hole.

The discovery of hundreds of young stars, of high masses and making oval-shaped orbits around a black hole three million times more massive than the sun, and at the centre of our Galaxy, is described as one of the most exciting recent discoveries in astrophysics.

Professor Bonnell said, “These simulations show that young stars can form in the neighbourhood of supermassive black holes as long as there is a reasonable supply of massive clouds of gas from further out in the Galaxy.”

Movie shows the evolution of a molecular cloud falling towards a black hole.  Some of the material is captured by the black hole to form an eccentric disc that quickly fragments to form 198 stars, illustrated by the white dots (Credit Bonnell and Rice).

The simulations, performed on the Scottish Universities Physics Alliance (SUPA) SGI Altix supercomputer – taking over a year of computer time – followed the evolution of two separate giant gas clouds up to 100,000 times the mass of the sun, as they fell towards the supermassive black hole.

The simulations show how the clouds are pulled apart by the immense gravitational pull of the black hole. The disrupted clouds form into spiral patterns as they orbit the black hole; the spiral patterns remove motion energy from gas that passes close to the black hole and transfers it to gas that passes further out. This allows part of the cloud to be captured by the black hole while the rest escapes.  In these conditions, only high mass stars are able to form and these stars inherit the eccentric orbits from the disc.  The results match the two primary properties of the young stars in the centre of our Galaxy: their high mass and their eccentric orbits around the supermassive black hole.

Dr Rice commented, ” The crucial element was the modelling of the heating and cooling of the gas as this tells us how much mass is needed for part of the cloud to have enough gravity to overcome its own gas pressure, and thus form a star. The heating is caused by the extreme compression of the cloud as it is squashed and pulled apart by the black hole. This is balanced by the cooling which requires detailed knowledge of how quickly the radiation can escape the cloud. ”

Professor Bonnell concluded, “That the stars currently present around the Galaxy’s supermassive black hole have relatively short lifetimes of around 10 million years, suggests that this process is likely to be repetitive.

“Such a steady supply of stars into the vicinity of the black hole, and a diet of gas directly accreted by the black hole, may help us understand the origin of supermassive black holes in our and other galaxies in the Universe.”

The research paper “Star formation around supermassive black holes” is published in the latest edition of Science.




PROFESSOR IAN BONNELL (ST ANDREWS): TEL 01334 463140 / 07768 153014, EMAIL [email protected]

DR KEN RICE (EDINBURGH): TEL 0131 668 8384, EMAIL [email protected]



Issued by the Press Office, University of St Andrews
Contact Gayle Cook, Press Officer on 01334 467227 / 462529, mobile 07900 050 103, or email [email protected]

Ref:  Young stars 200808
View the latest University press releases at

Category Research

Related topics

Share this story