Radar sensing: transforming the way we interact with computers

Friday 4 January 2019

Computer scientists at the University of St Andrews have made further advances in the use of miniature radar techniques, which could transform the way we interact with computers, smart watches and other devices.

The St Andrews Computer Human Interaction research group (SACHI) is a pioneer in what is known as solinteraction, which demonstrates the potential for radar-based interaction, and has worked with Google on Project Soli, a radar-based sensor that can sense the micro and subtle motion of human fingers.

In a move that could herald a major advance in the technology, the US Federal Communications Commission has recently granted Google a waiver that allows Project Soli sensors to use frequencies between 57 and 64 Ghz, which are higher than typically allowed in normal gadgets.

In 2015 Google’s Advanced Technology and Projects group (ATAP) showed off tiny radar-based sensors that enabled users to control gadgets simply by tapping their fingers together.

In a paper published in the journal Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies the St Andrews researchers demonstrate a range of novel techniques.

Professor Aaron Quigley, Chair of Human Computer Interaction in the School of Computer Science at the University of St Andrews, said: “Research has explored miniature radar as a promising sensing technique for the recognition of gestures, objects, users’ presence and activity. However, within Human-Computer Interaction, its use remains underexplored, in particular in Tangible User Interface.

“In this paper, we explore two research questions with radar as a platform for sensing tangible interaction with the counting, ordering, identification of objects and tracking the orientation, movement and distance of these objects.

“We detail the design space and practical use cases for such interaction, which allows us to identify a series of design patterns, beyond static interaction, that are continuous and dynamic.

“This exploration is grounded in both a characterisation of the radar sensing and our rigorous experiments, which show that such sensing is accurate with minimal training.”

Commenting on solinteraction, lead researcher and third year PhD student Hui Shyong Yeo said: “The advent of low-cost miniature radar being deployed in day-to-day settings opens new forms of object and material interactions as we demonstrate in this work.”

Exploring Tangible Interactions with Radar Sensing’ by Hui-Shyong Yeo, Ryosuke Minam, Kirill Rodriguez and Aaron Quigley (St Andrews); George Shaker (University of Waterloo, Ontario, Canada) is published in the journal Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies (Volume 2 Issue 4, December 2018).

A video of demonstrating the work is available online.

Please ensure that the paper’s DOI (doi.org/10.1038/s41562-018-0518-x) is included in all online stories and social media posts and that Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies is credited as the source.

Issued by the University of St Andrews Communications Office.

Category Research

Related topics

Share this story